后人把几何问题转换成代数语言:
一个平面作图问题,前提总是给了一些平面图形,例如,点、直线、角、圆等,而直线是由两点决定的;一个角可由其顶点和每边上取一点共三点决定;圆由圆心和圆周的一点决定;所以平面几何作图问题总可以归结为给定n个点即n个复数z1,....,Zn(当然还有z0=1)。
尺规作图过程也可以看作利用圆规和直尺不断得到新的复数,所以问题就变成为:给了一批复数Z0,Z1,... Zn和Z,能否从Z0,Z1,... Zn出发利用尺规得到复数Z。
于是可给出如下递归定义:
定义:设S={Z0=1,Z1,... Zn}是n+1个复数,将
(1) Z0=1,Z1,... Zn叫做S-点;
(2) 过两个不同的S-点的直线叫S-直线,以一个S-点为圆心、任意两个S-点之间的距离为半径的圆叫S-圆;
(3) 由S-直线与S-直线、S-直线与S-圆、S-圆与S-圆相交的点也叫S-点。
上面这个定义完全刻画了尺规作图过程,如果以P表示全体S-点的集合,那么P也就是从S={Z0=1,Z1,... Zn}出发通过尺规作图所得到的全部复数。
定理:设Z1,... Zn(n≥0)为n个复数。设F= Q(Z1,... Zn,Z1',... Zn'),(Z'代表共轭复数),那么,一个复数Z可由S={Z0=1,Z1,... Zn}作出的充要条件是 Z属于F(u1,... un)。 其中u12属于F, ui2 属于F(u1,... ui-1)。换言之,Z含于F的一个2次根号扩张。
系: 设S={Z0=1,Z1,... Zn},F= Q(Z1,... Zn,Z1',... Zn'),Z为S-点,则 [ F(z) :F] 是2的方幂。
以下证明三等分任意角的不可能性,证明尺规作图不能三等分60度角:
60度角即相当于复数Z1=1/2+√3/2 i。从而S={Z0=1, Z1},F=Q(z1, z1')=Q(√-3)。如果能作出20度角,当然也能得到cos20,但是cos20满足方程 4x3-3x-1/2=0,即8x3-6x-1=0。由于8x3-6x-1在Q[x]中不可约,从而[Q(cos20):Q]=3,于是
6=[ Q(cos20, √-3):Q] = [F(cos20):Q]=[F(cos20):F] [F:Q]
由于[F:Q]=[Q(√-3):Q]=2,所以[F(cos20):F]=3,根据上面的系可知cos20不是S-点 ,从而60度不可能三等分。
。。。
有一位古希腊人埃拉托色尼,博学多才,不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长。
他用简单的测量工具计算出了地球的周长,他发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子。但是,亚历山大城地面上的直立物却有一段很短的影子。他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成。从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角。按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长。
埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几。
他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近。他还测出黄赤交角的二倍是圆周的11/83。这些都充分反映了他的智慧。
埃拉托色尼还是首先使用“地理学”名称的人,写成了三卷专著,描述了地球的形状、大小和海陆分布,并用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学。他的《地理学》是把地理置于合理的数学基础上的最早尝试。
他还创造了一种素数筛选的普遍公式,称为“埃拉托塞尼筛法”:
“要得到不大于某个自然数N的所有素数,只要在2---N中将不大于√N(根号N)的素数的倍数全部划去即可”。
他对倍立方问题做过一定的研究,并制造出一种器械作图方法,还记载了倍立方问题起源的故事:
倍立方问题的来源,可追溯到西元前429年,一场瘟疫袭击了希腊第罗斯岛(Delos),造成四分之一的人口死亡。岛